10,066 research outputs found

    Charge ordering of magnetic monopoles in triangular spin ice patterns

    Full text link
    Artificial spin ice offers the possibility to investigate a variety of dipolar orderings, spin frustrations and ground states. However, the most fascinating aspect is the realization that magnetic charge order can be established without spin order. We have investigated magnetic dipoles arranged on a honeycomb lattice as a function of applied field, using magnetic force microscopy. For the easy direction with the field parallel to one of the three dipole sublattices we observe at coercivity a maximum of spin frustration and simultaneously a maximum of charge order of magnetic monopoles with alternating charges ±\pm 3.Comment: 7 pages, 4 figure

    Neutrino physics with multi-ton scale liquid xenon detectors

    Get PDF
    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7^7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼\sim2×\times10−48^{-48} cm2^2 and WIMP masses around 50 GeV⋅\cdotc−2^{-2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼\sim6 GeV⋅\cdotc−2^{-2} to cross sections above ∼\sim4×\times10−45^{-45}cm2^2. DARWIN could reach a competitive half-life sensitivity of 5.6×\times1026^{26} y to the neutrinoless double beta decay of 136^{136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.Comment: 17 pages, 4 figure

    Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity

    Full text link
    Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients associated with dimension-three Lorentz-violating operators at the level of 10^{-20} GeV.Comment: 8 pages REVTe

    Iron single crystal growth from a lithium-rich melt

    Get PDF
    \alpha-Fe single crystals of rhombic dodecahedral habit were grown from a melt of Li84_{84}N12_{12}Fe∼3_{\sim 3}. Crystals of several millimeter along a side form at temperatures around T≈800∘T \approx 800^\circC. Upon further cooling the growth competes with the formation of Fe-doped Li3_3N. The b.c.c. structure and good sample quality of \alpha-Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90\,ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.Comment: 13 pages, 4 figure

    Graphite based Schottky diodes formed on Si, GaAs and 4H-SiC substrates

    Full text link
    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.Comment: 5 pages, 3 figures, 1 tabl

    GeMSE: A new Low-Background Facility for Meteorite and Material Screening

    Full text link
    We are currently setting up a facility for low-background gamma-ray spectrometry based on a HPGe detector. It is dedicated to material screening for the XENON and DARWIN dark matter projects as well as to the characterization of meteorites. The detector will be installed in a medium depth (∼\sim620 m.w.e.) underground laboratory in Switzerland with several layers of shielding and an active muon-veto. The GeMSE facility will be operational by fall 2015 with an expected background rate of ∼\sim250 counts/day (100-2700 keV).Comment: The following article appeared in AIP Conf. Proc. 1672, 120004 (2015) and may be found at http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4928010. The muon spectrum in Figure 4 (left) was corrected due to a bug in the code. After correction the muon flux is reduced by a factor of about

    Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    Get PDF
    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952

    Absence of signatures of Weyl orbits in the thickness dependence of quantum transport in cadmium arsenide

    Full text link
    In a Weyl orbit, the Fermi arc surface states on opposite surfaces of the topological semimetal are connected through the bulk Weyl or Dirac nodes. Having a real-space component, these orbits accumulate a sample-size-dependent phase. Following recent work on the three-dimensional Dirac semimetal cadmium arsenide (Cd3As2), we have sought evidence for this thickness-dependent effect in quantum oscillations and quantum Hall plateaus in (112)-oriented Cd3As2 thin films grown by molecular beam epitaxy. We compare quantum transport in films of varying thickness at apparently identical gate-tuned carrier concentrations and find no clear dependence of the relative phase of the quantum oscillations on the sample thickness. We show that small variations in carrier densities, difficult to detect in low-field Hall measurements, lead to shifts in quantum oscillations that are commensurate with previously reported phase shifts. Future claims of Weyl orbits based on the thickness dependence of quantum transport data require additional studies that demonstrate that these competing effects have been disentangled
    • …
    corecore